There are many types of capacitor but they can be split into two groups, polarised and unpolarised. Each group has its own circuit symbol.
It is easy to find the value of electrolytic capacitors because they are clearly printed with their capacitance and voltage rating. The voltage rating can be quite low (6V for example) and it should always be checked when selecting an electrolytic capacitor. If the project parts list does not specify a voltage, choose a capacitor with a rating which is greater than the project's power supply voltage. 25V is a sensible minimum for most battery circuits.
Polarised capacitors
has a large values such as 1uF or larger
Electrolytic Capacitors
Electrolytic capacitors are polarised and they must be connected the correct way round, at least one of their leads will be marked + or -. They are not damaged by heat when soldering.
There are two designs of electrolytic capacitors; axial where the leads are attached to each end and radial where both leads are at the same end . Radial capacitors tend to be a little smaller and they stand upright on the circuit board.
It is easy to find the value of electrolytic capacitors because they are clearly printed with their capacitance and voltage rating. The voltage rating can be quite low (6V for example) and it should always be checked when selecting an electrolytic capacitor. If the project parts list does not specify a voltage, choose a capacitor with a rating which is greater than the project's power supply voltage. 25V is a sensible minimum for most battery circuits.
Tantalum Bead Capacitors
Tantalum bead capacitors are polarised and have low voltage ratings like electrolytic capacitors. They are expensive but very small, so they are used where a large capacitance is needed in a small size.
Unpolarised capacitors
has a small values such as 1uF or lower
Small value capacitors are unpolarised and may be connected either way round. They are not damaged by heat when soldering, except for one unusual type (polystyrene). They have high voltage ratings of at least 50V, usually 250V or so. It can be difficult to find the values of these small capacitors because there are many types of them and several different labelling systems!
Many small value capacitors have their value printed but without a multiplier, so you need to use experience to work out what the multiplier should be!
For example 0.1 means 0.1µF = 100nF.
Sometimes the multiplier is used in place of the decimal point: For example: 4n7 means 4.7nF.
Many small value capacitors have their value printed but without a multiplier, so you need to use experience to work out what the multiplier should be!
For example 0.1 means 0.1µF = 100nF.
Sometimes the multiplier is used in place of the decimal point: For example: 4n7 means 4.7nF.
Capacitor Number Code
A number code is often used on small capacitors where printing is difficult:
the 1st number is the 1st digit,
the 2nd number is the 2nd digit,
the 3rd number is the number of zeros to give the capacitance in pF.
Ignore any letters - they just indicate tolerance and voltage rating.
the 1st number is the 1st digit,
the 2nd number is the 2nd digit,
the 3rd number is the number of zeros to give the capacitance in pF.
Ignore any letters - they just indicate tolerance and voltage rating.
For example: 102 means 1000pF = 1nF
For example: 472J means 4700pF = 4.7nF (J means 5% tolerance).